

Causal Analysis of Vertical Flight Inefficiency During Descents

João Basílio Tarelho Szenczuk, M.Sc. Student

Brazil, August 20 and 21

Workshop ITA-MIT on big data analytics for air transportation

 Continuous descent operations (CDOs) are among the top priorities of ICAO's Global Air Navigation Plan (GANP);

• CDOs have proven to deliver significant economical and environmental benefits.

Fuel and time benefits of CDOs and CCOs:

- Melby and Mayer (2008) estimate that operators could save about <u>US\$ 380 million</u> per year with CDOs and CCOs in USA.
- Knorr et al. (2011) estimate that the benefits of CDOs along with en route speed reductions are in the order of <u>100 kg of fuel</u> and <u>3 minutes per flight</u>.
- Pamplona, Fortes and Alves (2015) estimate fuel savings in the order of 30% with CDOs.
- Howell and Dean (2017) estimate time and fuel reductions in the order 30-40% where time-based separation and CDOs were implemented.

Focus on the horizontal flight profile:

• Liu et al. (2017) employ a <u>clustering</u> algorithm and <u>statistical models</u> to analyze the causal factors of horizontal flight inefficiency. Considered factors were <u>adverse weather</u>, wind, <u>Miles-in-trail</u> (<u>MIT</u>) restrictions and <u>traffic patterns fixed effects</u>.

Research Question

What are the causes of non-continuous descents?

Considered factors:

- Airspace structure;
- Weather;
- Demand;
- Miles-in-trail (MIT) restrictions;
- Aircraft Type.

- Flight trajectories: FlightRadar24
- Weather conditions: METAR
- Miles-in-Trail restrictions: CGNA (DECEA)
- Study case: Guarulhos (GRU) and Congonhas (CGH)
- Period of analysis: 09/18/2017 to 11/14/2017

Methodology

- Trajectory clustering
 - DBSCAN
 - Traffic patterns
- Linear regression model
 - Vertical profile inefficiency metric (KPI19) is the dependent variable;
 - Categories of independent variables are <u>traffic patterns</u>, <u>adverse weather</u>, <u>demand and aircraft type</u>.

Causal Analysis of Vertical Flight Profile Inefficiency During Descents

Nominal Routes

Causal Analysis of Vertical Flight Profile Inefficiency During Descents

 $VID = \frac{distance in level flight}{total descent distance} x 100$

Flights to CGH (11-01-2017)

Vertical Inefficiency (VID)

Data overview

GRU

- 11591 flights
- Average Inefficiency: 5.7 %
- ~ <u>50%</u> were <u>CDOs</u> according to the adopted methodology

CGH

- 7468 flights
- Average Inefficiency: 7.42 %
- ~ <u>34 %</u> were <u>CDOs</u> according to the adopted methodology

VID by Cluster

Data overview (GRU)

VID by Cluster

Data overview (CGH)

Data overview

Mean altitude of level offs by cluster

Mean altitude of level offs by cluster

Data overview (GRU)

Mean altitude of level offs by cluster

VID by Cluster

Mean altitude of level offs by cluster

Data overview (CGH)

Data overview (GRU)

Flights to GRU (11-01-2017) Flights to GRU (10-27-2017) 30000 -30000 -VID VID Altitude (ft) 40 €20000 -50 30 Altitude 40 20 30 20 10 10 0 10000 -10000 -500 1000 1500 2000 0 1000 2000 3000 0 Time before last data point Time before last data point

Data overview (CGH)

WORKSHOP ITA-MIT ON BIG DATA ANALYTICS FOR AIR TRANSPORTATION

Data overview

Excess time in TMA vs. VID (CGH) 80 -60 -60 -Ē ₽ 40 20 -20 -0 0 30 40 10 20 20 40 60 Excess time in TMA (m) Excess time in TMA (m)

Excess time in TMA vs. VID (GRU)

Variables

ARR_CGH ; DEP_CGH; ARR_GRU; DEP_GRU	Demand variables indicating the number of aircrafts in each situation.
MIT	Dummy. Indicates the occurrence of MIT restrictions.
WX	Dummy. It is 1 when the METAR reports rain, thunderstorm or cumulonimbus clouds.
LIFR	Dummy. It is 1 when the METAR reports visibility below one nautical mile or ceiling below 500 feet.
traffic_pattern	Dummy. Indicate the nominal route. Outliers' group is the baseline.
aircraft_type	Dummy variable for each aircraft type.

WORKSHOP ITA-MIT ON BIG DATA ANALYTICS FOR AIR TRANSPORTATION

Causal Analysis of Vertical Flight Profile Inefficiency During Descents

AUGUST 20 AND 21 DEPARTMENT OF CIVIL ENGINEERING (IEI)

	(CGH)	(GRU)	
	VID	VID	
ARR_CGH	0.5766***	0.0408	
ARR_GRU	0.0090	0.6285***	
DEP_CGH	-0.1828**	-0.0790	
DEP_GRU	-0.0879	0.0180	
WX	2.2777***	1.9076***	
LIFR	0.6571	6.8187***	
MIT	-0.0018	1.0787***	
traffic_pattern_1	-13.4724***	-7.9272***	
traffic_pattern_2	-11.8569***	-8.9315***	
traffic_pattern_3	-11.8940***	-5.8325***	
traffic_pattern_4	-6.6355***	-7.5604***	
traffic_pattern_5	-14.0560***	-7.2626***	
traffic_pattern_6	-14.3918***	-5.1383***	
traffic_pattern_7		-8.3522***	
traffic_pattern_8		-7.6021***	
traffic_pattern_9		3.7426***	
traffic_pattern_10		2.2068	
Aircraft type dummies	yes	yes	
R2_Adj	0.2544	0.2417	
RMSE	7.5023	7.7184	
N_Obs	7468	11591	

Estimation Results

	(CGH)	(GRU)
	VID	VID
ARR_CGH	0.5766***	0.0408
ARR_GRU	0.0090	0.6285***
DEP_CGH	-0.1828**	-0.0790
DEP_GRU	-0.0879	0.0180
WX	2.2777***	1.9076***
LIFR	0.6571	6.8187***
MIT	-0.0018	1.0787***

p<0.25, * p<0.10, ** p<0.05, *** p<0.01

Causal Analysis of Vertical Flight Profile Inefficiency During Descents

AUGUST 20 AND 21 DEPARTMENT OF CIVIL ENGINEERING (IEI)

Estimation Results

	(CGH)	(GRU)	
	VID	VID	
traffic_pattern_1	-13.4724***	-7.9272***	
traffic_pattern_2	-11.8569***	-8.9315***	
traffic_pattern_3	-11.8940***	-5.8325***	
traffic_pattern_4	-6.6355***	-7.5604***	
traffic_pattern_5	-14.0560***	-7.2626***	
traffic_pattern_6	-14.3918***	-5.1383***	
traffic_pattern_7		-8.3522***	
traffic_pattern_8		-7.6021***	
traffic_pattern_9		3.7426***	
traffic_pattern_10		2.2068	

p<0.25, * p<0.10, ** p<0.05, *** p<0.01

• Airspace structure mainly determines VID;

• Convective weather significantly impacts VID;

• MIT restrictions and low IMC may increase VID;

• Wind speed and direction were not considered.

Causal Analysis of Vertical Flight Profile Inefficiency During Descents

João Basílio Tarelho Szenczuk, M.Sc. Student

Brazil, August 20 and 21

Workshop ITA-MIT on big data analytics for air transportation