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•  Examples:
•  Safety 
•  Environmental & Fuel 

Efficiency 
•  Airport & Air Traffic 

Performance
•  Airport Community Noise 

Analysis

Examples of Data Analytics To Improve 
Operational Performance

Cruise	Altitude	&	Speed	
Optimization	
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3.3 Pattern-based Anomalies and Instantaneous 

Anomalies 

Anomalies in FDR data can be categorized in two types: pattern-based anomalies and 

instantaneous anomalies. Figure 3.4 and Figure 3.5 shows examples of these two types of 

anomalies. In these two plots, anomaly signal is depicted in red. A normal profile is presented by 

blue areas – the center blue line shows the median of normal values, the dark blue area gives the 

range of 50% of normal values, and the light blue area depicts the range of 90% of normal values.  

Pattern-based anomalies are data with abnormal patterns over a specific flight phase. As 

shown in Figure 3.4, pattern-based anomalies are observed in engine parameter “N1”, which 

measures fan speed and is representative of engine thrust. The profile of “N1” is different from the 

normal profile from 6nm before touchdown to 1nm before touchdown; each individual data sample 

is not significantly deviating from the normal value. In comparison, instantaneous anomalies are 

abnormal data that occurs instantaneously. Figure 3.5 gives an example of an instantaneous 

anomaly in “Angle of Attack”.  

The objective of anomaly detection in this thesis is to detect both types of anomalies. Because 

distinct data transformation techniques are used in ClusterAD-Flight and ClusterAD-Data 

Sample, we expect the two methods to be sensitive to different types of anomalies. Thus, an 

evaluation on which types of anomalies are better detected by which method was performed in 

this research. 

 

Figure 3.4 Pattern-based Anomaly Example 

 

 

Figure 3.5 Instantaneous Anomaly Example 
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers)
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )
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Fatal Accidents  
Worldwide Commercial Jet Fleet 
1959-2014  

Source: 2014 Boeing Statistical Summary

Commercial Aviation Safety Has 
Continuously Improved



Monitoring and Identification of 
Emerging Risks

�  ICAO Annex 6
§  Safety Management Systems
§  Flight Data MonitoringAccidents

Incidents

Hazards

Risk Factors Investigation

Implementation

Safety
Research

Identified
Risks

Mitigations

Abnormal 
Events

)
Precursor 

Identification

Anomaly Detection as Precursor 
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Identification of Anomalous Flights in Digital 
Flight Data Recorder Data

•  Background: 
–  Massive flight data collected through 

FOQA/FDM; rich information
–  Complicated to analyze

•  100+ ~ 1000+ parameters for each flight
•  Current practice: Exceedance Detection

–  Detect when a threshold is exceeded 
under certain conditions

–  List of events believed to be unsafe
–  Limited to known Safety Issues

Example FDR data * 

* Reference: NTSB, “FDR Group Chairmenʼs Factual Report, DCA09MA027,” 2009  
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Watch	Cases	

FDR	Data	

Abnormal	Flights	

Anomaly	Detection	

Expert	Review	

Benign	Cases	

Data	Representation	

Clusters	

Anomalies	
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DFDR Data Mining  
Cluster Analysis Approach

•  Approach
–  Divide data by flight phase; make time series comparable
–  Integrate time series into a vector in a high-dimensional space
–  Cluster analysis of flights

•  Cluster similar flights together
•  Identify anomalous flights that are different from the majority 

•  No requirement for pre-defined parameter thresholds
•  Also used Gaussian Mixture Models
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Example Results 
B-777 Takeoff

•  Low Power Takeoff •  Heavy Takeoff, Double Rotation

50
% 

90
% 
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Example Results  
B-777 Approach

•  Low Approach •  Fast Approach

50
% 

90
% 
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ICAT Anomaly Based Monitoring using Data Mining Techniques

Watch	Cases	

FDR	Data	

Abnormal	Flights	

Anomaly	Detection	

Expert	Review	

Benign	Cases	

Data	Representation	

Clusters	

Anomalies	
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Flight parameters to review for a flight
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Flight Abnormality Visualization

•  A visualization tool has been developed to guide domain 
experts to quickly locate anomalies - which parameters at 
what time are abnormal

Abnormal	

Normal	5	

-30	
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ICAT Flight Abnormality Visualization Example

Demo	

15 
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )
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•  Runway Excursion a Leading 
Cause of Fatal Commercial 
Accidents

•  Rain, snow or contamination can 
result in degraded braking and 
runway excursion 

–  e.g. Southwest Airlines 1248 (MDW)

•  Limited success in predicting 
braking conditions 

–  TALPA
•  Further efforts needed to 

understand and predict 
degraded braking

Identification of Degraded Braking Conditions

Source: CBS Chicago 17 

Runway	Excursion	Landing	
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Data-Driven Approach to Degraded Braking

Exploring data mining approaches using large databases to 
characterize degraded braking at a macro-scale: 
1.  Identification of degraded braking 
2.  Analysis of recurrent patterns 
3.  Prediction of degraded braking 

Exogenous parameters 
 

•  Weather conditions 
•  Runway contamination  
•  Airport & runway 

characteristics 
•  Aircraft landing information  

Braking observations 

•  Degraded braking observations 

•  Normal braking observations 

Identification of 
predictors 

Development of 
predictive models 

Ø  Main challenge: Gather reliable truth information about braking 
performance 

Identification Analysis Prediction 

Predictive Modelling Scheme 
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Initial work on understanding and predicting degraded braking:

–  Based on Pilot Braking Reports & Field Condition Reports (FICON)

–  Proof of concept with Pilot Braking Reports used as a “truth” for 

degraded braking 
1.  Analysis of dependency of Pilot Braking Reports with FICON 

Data & exogenous parameters collected at US airports 

2.  Development of predictive models 
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Using Pilot Braking Reports as Truth Data

Runway contaminants, depth 
and percentage of coverage 

(FICON)  

Collected Exogenous Data 

Pilot Braking Reports 

•  Good 
•  Good to Medium 
•  Medium  
•  Medium to Poor 
•  Poor 
•  NIL 

3. Development 
of predictive 

models 

1. Identification 
of predictors 

2. Understanding 
of predictors 

impact 
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•  Received 288,000 US FICON NOTAMs for 2017-2018 winters from 
FAA (5,241 with Pilot reports)

20 

FICON NOTAM Reports

Localisa�on	of	FICON	Observa�ons

Map	based	on	Longitude2	and	Latitude2.		Color	shows	%	of	Total	Count	of	Number	of	Records.		Details	are	shown	for	City.
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FICON NOTAM Reports

Contaminant Type & Remainder 
Contaminant 

Contaminant 
Coverage & 

Depth 
Treatment Braking 

Action 

Runway 
Condition 

Code 

•  Wet  
•  Water Over Ice 
•  Water 
•  Frost 
•  Slush 
•  Ice 
•  Wet Ice 
•  Wet Snow 
•  Wet Snow Over 

Ice  
•  Dry Snow Over 

Ice 
•  Compacted 

Snow 

•  Dry Snow 
•  Water Over 

Compacted 
Snow 

•  Wet Snow Over 
Compacted 
Snow 

•  Slush Over Ice 
•  Dry Snow Over 

Compacted 
Snow 

•  Slippery When 
Wet 

•  Ash 
•  Oil 
•  Sand 
•  Mud 

•  % of 
covered 
area  

•  Depth 
(Inches) 
for some 
contamina
nts 

•  Plowed 

•  Scarified 

•  Swept 

•  Sanded 

•  Deiced 
Liquid 

•  Deiced 
Solid 

•  Nil 

•  Poor 

•  Medium 
to Poor 

•  Medium 

•  Good to 
Medium 

•  Good 

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 

Ø  Per runway third 
Ø  Per 
runway 

third 

Ø  Per runway 
third 
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Use of an Ordinal Logistic Regression 
model to predict Braking Action 

•  Prediction of Odds of Braking Action 
for each landing

•  Braking Action between j-1 & j predicted 
when
 

Initial Modelling of Braking Action

•  Method provides: 
Ø  Simple understanding of the impact 

of each factor on the odds to 
observe a category of braking 

•  Analysis of the impact of each factor on 
the odds with a single coefficient β 

Predicted 
Braking Action 

NIL 

POOR 

MEDIUM TO 
POOR	

MEDIUM	

GOOD TO 
MEDIUM 

GOOD  

Threshold 
Value () 

-5.43 (j=1) 

-2.32 (j=2)	

-1.43 (j=3) 

0.14 (j=4) 

0.95 (j=5) 
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-0.4	
-0.3	
-0.2	
-0.1	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	 Standardized	Coefficient	β		

Contaminant	

Duration	 Remainder	

Monitoring	
Runway	
Condition	

Dimensions	

Sides	

Surface	
Treatment	

Surface	Type	

Contaminant	
Treatment	

Weather	
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Predicted 

 
 
    Observed 

NIL POOR MEDIUM 
TO POOR MEDIUM GOOD TO 

MEDIUM GOOD 

NIL 0.0% 2.1% 0.5% 0.5% 0.0% 0.0% 

POOR 0.0% 4.7% 1.2% 2.8% 0.9% 0.2% 

MEDIUM TO POOR 0.0% 1.7% 1.4% 1.9% 1.2% 1.4% 

MEDIUM 0.0% 0.7% 0.9% 6.8% 6.1% 6.6% 

GOOD TO MEDIUM 0.0% 0.2% 1.7% 2.6% 3.1% 4.7% 

GOOD 0.0% 0.2% 0.5% 2.8% 10.1% 32.3% 

Confusion Matrix  (48% direct match, 81% within 1 classification group) 
24 



MIT
ICAT

•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )

25 
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Identification of Operational Mitigations to 
Reduce Environmental Impact

•  Funding: FAA Office of Environment & Energy (FAA/AEE)
•  High-Level objective: Identify & evaluate operational mitigations to 

reduce environmental impacts of aviation in the near/mid-term 
with minimal implementation barriers

•  Prior work: Identified/evaluated  
over 60 mitigations

•  Current research focus: 
Quantify benefits and barriers 
to implementation of:
–  Delayed Deceleration Approach
–  Cruise Altitude and  

Speed Optimization  
(CASO)

Surface (S):
16 mitigations

Departure (D):
11 mitigations

Approach (A)
& Landing (L)
9 mitigations

Cruise (C):
14 mitigations

Miscellaneous (M): 11 mitigations

ORIGIN
AIRPORT

DESTINATION
AIRPORT
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•  2012	Radar	analysis	shows	56%	of	
domestic	flight	time	spent	in	high-
altitude	cruise	

•  Efficiency	Metric:	“Specific	Ground	
Range”	
−  Maximizes	ground	distance	per	unit	of	

fuel	consumption	
−  Accounts	for	wind	and	temperature	

•  Typical	airliner	cruise	conditions	are	not	
fuel-optimal	with	respect	to	speed	and	
altitude	
−  Opportunities	in	flight	planning,	

dispatch,	and	cockpit	procedures		
−  Potential	applications	in	the	NextGen	

ATM	framework 

Typical	Narrow	Body	Jet	
Efficiency	Contours	

Typical Operating 
Regime 
(fast,  

off-optimal alt) Optimal	
Mach/Alt	
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ICAT CASO Analysis Approach

Radar	Tracks	

Aircraft	Fuel	
Burn	Model	

	
Lissys	PianoX	

or	
Eurocontrol	
BADA	3.11	

	

Weight	
Estimation	

As-Flown	Fuel	
Burn	

Improved	Fuel	
Burn	

(from	changed	
speed/alt)	

CASO	
Benefits	

Baseline	(As-Flown)	Trajectory	

Weather	
Correction	
Wind/Temp	

Speed/	
Altitude	
Optimizer	

	

Modified	Trajectory	
(Speed/Altitude)	
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•  Fuel	consumption	is	dependent	on	
aircraft	weight	

•  Weight	is	not	reported	in	public	data	
sources	

•  Estimation	method:	regression	
surface	using	data	provided	by	three	
major	US	airlines	
−  Regression	variables	

1.  Total	flight	time	
2.  Initial	cruise	altitude	

−  35,131	sample	flights	including	
domestic	US	and	long	haul	flights	

9,779 Sample Points 

Example:	A320	Weight	Estimation	
Surface	

29 
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ICAT Single-Flight Speed Optimization

Max	Range	Cruise	(MRC),	Fuel	Optimal		
4.58%	Fuel	Savings,	5.0	Minute	Flight	Time	Increase	
Long	Range	Cruise	(LRC),	99%	Efficiency	
3.59%	Fuel	Savings,	2.2	Minute	Flight	Time	Increase	
As-Flown	Mach	
	
	

30 
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Joint Altitude and Speed Optimization for 2012 
Data By Airline

		More	
Efficient	

		Less	
Efficient	

Data	from	2012	(18	days)	

Mainline	3,	n=18,074	
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		More	
Efficient	

		Less	
Efficient	
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ICAT Aggregate Speed Efficiency: 2015 Data

		More	
Efficient	

		Less	
Efficient	



MIT
ICAT Altitude Optimization Tunnel



MIT
ICAT Prototype EFB Decision Support Tool

•  Apply Cruise Altitude and Speed Optimization algorithm in an EFB tool to 
aid in pilot decision making

•  Computes current and future aircraft fuel and schedule performance
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usglobalsat.com	

Sparksheet.com	

Weather	Data	

Aircraft	Position	

Flight	Plan	and		
Initial	Weight	

Manual	Input/Upload	

GPS	Receiver	

Inflight	Wifi	

Aircraft	
Performance	Model	

Standalone	setup	independent	of	aircraft	systems	developed	for	
testing,	but	future	integration	with	aircraft	systems	envisioned	
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•  Operational coordination opportunity with airlines
–  NDA signed with a major carrier
–  Preliminary flight trials flown
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•  Four flights currently conducted:
–  B772
–  LAX-HNL, HNL-SFO, ORD-PVG, PVG-ORD

39 

Preliminary Flight Trials

Lateral	Route	of	4	flights?	

San	Francisco	
Chicago	

Honolulu	
Shanghai	 Los	Angeles	

4	

3	
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•  Decision support tool run on a computer on the ground and 
information sent to crews and dispatchers, pending approval 
for jumpseat access

40 

Flight Trial Set-Up

Dispatcher	

Flight	Crew	

ACARS	Website	

Image	

MIT	

Flight	plan	and	position	updates	

Rerun	when:	
weather	updates,		
flight	plan	changes,		
weight/position	updates	

(When	inflight	
Wi-Fi	available)	

52N30+280NM FL350/50N13+60NM FL370 

Recommended	trajectory	

Emailed	Image	

(before	departure)	
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HNL-SFO Results
As-Flown	
CASO	Recommended	
Flight	Plan	

Note:	Turbulence	not	displayed	
during	flight	due	to	lack	of	
formatted	turbulence	data	

“Climbed	to	390	50	west	of	CORTT	
to	try	to	get	out	of	lgt	chop.”	 “Climbed	to	400	100	west	of	

CUNDU	to	try	to	get	out	of	mod	
turb.”	

“Climbed	to	380	90	west	of	CIVIT	to	get	
above	cloud	layer.	Turb	better	at	380,	
almost	smooth”	

Performance	from	CEBEN	to	CREAN	
Trajectory	(Source)	 Δ	Fuel	Burn	(lbs)	 Δ	Time	(min)	

Flight	Plan		
(Flight	Plan	prediction)	

0	 0	

CASO	Recommended	(CASO	
prediction)	

3659	lbs	savings	 1	min.	longer	

As-Flown	(recorded)	 3820	lbs	savings	 4	min.	longer	
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )

42 
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DFDR Fuel Burn Variability Example  
A-330-200

•  Identification	of	systemic	operational	
factors	through	data	mining	can	inform	
strategies	for	fuel	burn	reduction	

•  Mitigating	high-burn	operations	
•  Adopting	strategies	observed	in	

low-burn	operations	
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Example Flight Data Recorder Data

•  Flight Data 
Recorders provide 
large set of internal 
states at relatively 
high resolution

•  Data from 
collaboration with 
an airline
–  278,404 flights
–  14 Aircraft types
–  2-5 mile resolution
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Example Correlations with Average Specific 
Fuel Consumption (kg/km)

Weight	 Altitude	

Headwind	 Speed	(IAS)	

N1	 EGT	

Temp	(SAT)	

Speed	(Mach)	

Engine	
Vibration	
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•  Preliminary analysis
–  One widebody aircraft type
–  20,000 segment observations from ~200 flights
–  Predicted variable: segment fuel burn
–  Trained 100 trees for 100 cycles
–  Analysis in process

46 

Random Forest Identification of Influence 
Factors
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•  Very preliminary results from random forest to identify 
important factors

47 

Very Preliminary Results from Random 
Forest Identification (unverified)

Preliminary:	20	Most	Important	Variables	

Trained	on	20,000	FDR	segment	
observations	for	segment	fuel	burn	
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )

48 

Examples
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•  Keep aircraft “clean” for longer on 
approach when appropriate without 
impacting terminal area entry or 
final approach stabilization criteria 
–  Between these 

speed gates,  
opportunity for  
encouraging more 
efficient approach 
speed profiles 

Distance to touchdown

AirspeedTypical
Conventional

Terminal area
entry speed

Final approach
speed

Sample flap 1

Sample flap 2

Runway

Delayed Decel.
=> Low Power/

Low Drag

“Clean” configuration 

“Dirty” 
configuration 

230-250 
kts IAS 

160-180 
kts IAS 

A
irspeed 

Distance to Touchdown ≈10 nmi ≈30 nmi 
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n = 61 flights on a 3°
vertical profile
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n = 61 flights on a 3°
vertical profile
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European 
A320 Flight 

Data 
Recorder 
Analysis 

(similar results 
for B757 & B777) 

30-50% fuel burn reduction potential from 
DDAs from 10,000 ft to touchdown, similar 

to Continuous Descent Approach (CDA) 

•  Lowest fuel burn flights (green profiles) 
associated with delayed deceleration 

50 
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )
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•  Runway Occupancy Time (ROT) is an increasing limitation to Runway Capacity 
•  Understand factors driving ROT & develop predictive models to optimize ROT
•  Analysis of 3 million landings around US Airports using ASDE-X radar tracks

52 

Runway Occupancy Time Optimization

Runway 
Threshold 

Runway 
Exit 

Example:	1	day	of	ASDE-X	tracks	 Example:	single	landing	flight	
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•  Estimation of the relative importance of different factors to explain the variance of ROT
–   Using the collected ROT database for US Airports
–   Using a random forest algorithm : forest of 300 trees of max depth 25

Ø   Most important predictors appear more often in trees & contribute more to variance 
decrease

53 

Identifying Factors Driving ROT Using Random 
Forest

Exit	Location	Airline	 Aircraft	
Type	

Exit	
Angle	

Approach	
Speed	
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Identifying Factors Driving ROT Using Random 
Forest

•  Most important 
predictor:  

•  Exit location  

•  Major impact on 
ROT: 

 

•  Aircraft type 
•  Airline 
•  Exit angle 
•  Final Approach 

speed  
•  Type of 

following aircraft 

Ranking	of	the	importance	of	ROT	factors	
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Optimizing ROT using Predictive ML Models

•  Development of 
Machine Learning 
predictive models able 
to predict ROT based on 
airport configuration, fleet 
mix & environment 

 

 
•  Use of predictive models 

to propose optimal 
changes to runway exit 
systems of airports 

Predictive	runway	occupancy	time	model	using	
Neural	Networks	

Example	of	predicted	ROT	distributions	at	major	
European	airport	
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers)
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )

56 

Examples
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Comparative Analysis of 3 Metroplexes 
New York, Hong Kong, Sao Paulo

57	

•  60 days of flight tracks at the NY, HK and SP metro airspace
–  55% fair weather days and 45% weather-impacted days
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•  Spatial trajectory patterns identified with trajectory clustering
–  NY stands out with the highest number of routes; SP and HK have more similar 

structure
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•  3D trajectory tubes created based on lateral and vertical dispersion of 
trajectories in each cluster

•  Route intersections identified with pairwise analysis of trajectory tubes
–  NY has the most
conflicted airspace structure
(especially JFK-LGA)
–  Airspace structures of HK
primary airports are highly 
de-conflicted
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•  Knowledge about traffic flow patterns used to identify relevant flow 
interactions between the metroplex airports

•  Route intersections translated into two types of flow interactions

Flow Dependency 
 
If, for all MFP, routes are not used 

simultaneously 

Flow Crossing 
 
If, for at least one MFP, routes are 

used simultaneously 
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•  Metroplex airspace design efficiency 
–  HK stands out with the least efficient airspace 
design (especially driven by HKG) 
–  VCP presents the most efficient design 

Performance Analysis 
Efficiency

62	

di

Di S = pisi
i=1

N

∑

si = Di − di

Structural path stretch metric: 
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Performance Analysis 
Efficiency

63	

•  Traffic flow efficiency (lateral & temporal)
–  NY presents the highest traffic flow efficiency
overall, but is more impacted by weather
–  HK shows considerably lower lateral efficiency

Traffic flow efficiency metric: 

Efflateral = di
i=1

N

∑ Di
i=1

N

∑

Efftemporal = ti
i=1

N

∑ Ti
i=1

N

∑
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Data Mining Framework 
Clustering at Temporal Scale

64 

Complete linkage 

 
Vector composed of dominant trajectory clusters from each arrival gate 
to each airport during the specified time scale:  
(Csouth-JFK, Csouth-EWR, Csouth-LGA,…, Cnorth-JFK, Cnorth-EWR, Cnorth-LGA)  

Hamming distance  
(fraction of features that differ) 

Hourly Flow Pattern Vectors 

Dissimilarity Matrix Hierarchical Clustering 
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )

65 

Examples
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Over 100 companies (of varying credibility) have announced vehicles

Urban Air Mobility and eVTOL Aircraft 
Development 

Airbus	A^3	Vahana	 Opener	Blackfly	

Joby	Aviation	S4	

eHang	216	 Volocopter	2x	

Workhorse	Surefly	

Kitty	Hawk	Cora	
Lilium	Lilium	Jet	

Kitty	Hawk	Flyer	

Flying	Full-Scale	Prototypes	

Moller	Skycar	

Terrafugia	

Pipistrel	

Boeing	–	Aurora	Flight	Sciences	

Rolls-Royce	

Karem		 Bell	 Airbus	

Other	Well	Funded	Developers		

MIT estimates over $2 Billion invested in UAM vehicles, infrastructure, and technology 

Embraer	

Many	Additional	Vehicle	Concepts		
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Approach to Evaluate UAM Airport and 
Airspace Integration
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•  Defined a “containment boundary” to enclose a specified 
percentile of radar trajectories   

•  Boundary defined for trajectories based upon same along-
track distance from the runway end 

Cross	section	of	one	“sample	box”	
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Large	transport	arrivals	to	Logan		
for	180	days	in	2015-2016	

99.5th	percentile	containment	
boundaries	



MIT
ICAT Containment Boundaries

28L – 21k flights 19R – 90 flights

28R – 34k flights

19L – 1.6k flights

trajectory containment 
boundaries with 99.5% 
inclusion	
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Containment Boundary Variation  
with Percentile Inclusion and City - Arrivals

Large	jet	arrivals	to	runway	4R	at	Logan	

Lateral	width	of	trajectory	containment	boundaries	for	arrivals	at	case	study	airports		

Large	jet	arrivals	in	west	flow	at	Atlanta	
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99.5th Percentile Containment Boundaries  
for 3 Case Study Airports

37,000	arrivals	 56,000	departures	

46,000	departures	
173,000	departures	

57,000	arrivals	

99,000	arrivals	

Boston	

San	Francisco	

Atlanta	
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )
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Examples
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2015	2010	
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Noise Complaints and RNAV Track 
Concentration

75 

2017	2010	
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•  RNAV concentration issue 
outside of Annual Average 
DNL 65dB contour

•  Analysis performed by 
this research team at 
BOS, MSP, CLT, and LHR 
indicates that N60 on a 
Peak Day with 50 
overflights represents the 
noise threshold for 
complaints

76 

Alternative Metrics to Capture RNAV 
Concentration Impacts

2017	
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Cluster Analysis to Correlate Complaint 
Locations with Procedure

BOS	 LHR	

MSP	 CLT	
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TASOPT

ANOPP/AEDT 

Performance Model Inputs:
Operating/mission parameters

Aircraft sizing/performance parameters

Engine sizing/performance parameters

Single-Event 
Noise Grids 

Aircraft/engine
performance

& geometry

Performance Model Outputs:

Noise Model Control Inputs:
Propagation Settings
Observer Locations

Flight Profile 
Generator

Flight Procedure:
Thrust, velocity, position, 

gear/flap settings per time

Procedure Definition:
Lateral Path

Speeds
Configuration

Output to Grid 
Summation

BADA4 Existing 
Aircraft Data

Aircraft 
Type

Noise Analysis Framework

78 
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•  N60 on a peak day with 50 overflights appears to capture complaint 
threshold in dispersion analysis

BOS N60 Count Thresholds

33L	Departures	Peak	Day	N60	 4L/R	Arrivals	Peak	Day	N60	 27	Departures	Peak	Day	N60	

79 2017	Data	

Peak	Day	
N60	

Complaints	
Captured	

25x	 87.3%	

50x	 80.9%	

100x	 59.4%	

Peak	Day	
N60	

Complaints	
Captured	

25x	 97.7%	

50x	 94.7%	

100x	 81.0%	

Peak	Day	
N60	

Complaints	
Captured	

25x	 95.4%	

50x	 92.1%	

100x	 78.8%	
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•  N60 on a peak day with 50 overflights appears to capture complaint 
threshold in dispersion analysis

LHR N60 Count Thresholds

09	Departures	Peak	Day	N60	 27	Arrivals	Peak	Day	N60	

80 2017	Data	

Peak	Day	
N60	

Complaints	
Captured	

25x	 91.0%	

50x	 82.6%	

100x	 61.4%	

Peak	Day	
N60	

Complaints	
Captured	

25x	 93.2%	

50x	 84.9%	

100x	 80.2%	
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )
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Examples
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•  Keep aircraft “clean” for longer on 
approach when appropriate without 
impacting terminal area entry or 
final approach stabilization criteria 
–  Between these 

speed gates,  
opportunity for  
encouraging more 
efficient approach 
speed profiles 

Distance to touchdown

AirspeedTypical
Conventional

Terminal area
entry speed

Final approach
speed

Sample flap 1

Sample flap 2

Runway

Delayed Decel.
=> Low Power/

Low Drag

“Clean” configuration 

“Dirty” 
configuration 

230-250 
kts IAS 

160-180 
kts IAS 

A
irspeed 

Distance to Touchdown ≈10 nmi ≈30 nmi 
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n = 61 flights on a 3°
vertical profile
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European 
A320 Flight 

Data 
Recorder 
Analysis 

(similar results 
for B757 & B777) 

30-50% fuel burn reduction potential from 
DDAs from 10,000 ft to touchdown, similar 

to Continuous Descent Approach (CDA) 

•  Lowest fuel burn flights (green profiles) 
associated with delayed deceleration 
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TASOPT

ANOPP/AEDT 

Performance Model Inputs:
Operating/mission parameters

Aircraft sizing/performance parameters

Engine sizing/performance parameters

Single-Event 
Noise Grids 

Aircraft/engine
performance

& geometry

Performance Model Outputs:

Noise Model Control Inputs:
Propagation Settings
Observer Locations

Flight Profile 
Generator

Flight Procedure:
Thrust, velocity, position, 

gear/flap settings per time

Procedure Definition:
Lateral Path

Speeds
Configuration

Output to Grid 
Summation

BADA4 Existing 
Aircraft Data

Aircraft 
Type

Noise Analysis Framework
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Flight Profile Generation  
Example for a B737-800 Approach

Example Approach Radar data in 2017 at BOS, 22L • Altitude (3000ft level off in this case 
only) and Velocity is constrained to the 
medians of this data

• Flaps assumed deployed within their 
maximum and minimum speed ranges

Resulting thrust profile is determined for 
these profiles from drag data

Median	Altitude	Profile	

Groundspeed Radar data converted into 
indicated airspeed, assuming no wind

Median	Velocity	Profile	

Gear assumed 
deployed ~6nmi 
from touchdown 

based on 
observed 

deceleration
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Groundspeed Profiles
Converted to Indicated Airspeed
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Median Velocity Profile
Sample Early Deceleration Profile

Delayed Deceleration Approaches
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Velocity	Radar	Data	for	B737-800	4000ft	Level	Offs	into	4R		

Modeled	Profiles	

-30 -25 -20 -15 -10 -5 0

Distance to Touchdown (nmi)

40

50

60

70

80

90

100

L
A

M
A

X
 (

d
B

)

All
Engine Total
Fan
Core
Jet
Airframe Total
Slat
Flaps
Gear
Clean Airframe

flaps	1	

Example	Noise	Component	Breakdown	Under	
the	Flight	Track	

0

5000

10000

Ai
rc

ra
ft 

Al
tit

ud
e

(fe
et

)

100

150

200

250

In
di

ca
te

d
Ai

rs
pe

ed
 (k

no
ts

)

flaps  1
flaps  5

flaps 10flaps 15flaps 25
flaps 30

flaps  1
flaps  5

flaps 10
flaps 15 flaps 25

X Gear

flaps 25flaps 15
flaps  5

flaps 10

flaps  1

-30 -25 -20 -15 -10 -5 0
Ground-Track Distance (nmi)

0

50

100

%
 M

ax
im

um
Th

ru
st

flaps	5	

flaps	10	
flaps	15	

flaps	25	

flaps	30	

•  Reduce	noise	by	delaying	extension	of	flaps	
•  Potential	concerns	from	ATC	and	pilots	

regarding	different	deceleration	rates	and	
managing	traffic		

•  Must	decelerate	early	enough	to	assure	
stable	approach	criteria	
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Boeing	737-800	ILS	approach	with	4,000	ft	level	off	
Noise	Component	Breakdown	Under	the	Flight	Track	

Standard	Deceleration	from	mean	
velocity	seen	in	radar	Data		 Example	Delayed	Deceleration		
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LA,max 60 dB 65 dB 70 dB
Standard 37,621 14,912 4,936
DDA 31,835 13,927 4,784
Difference 5,786 985 152

88 Preliminary	example	to	evaluate	methodology	only.	Should	not	be	considered	representative	case.	

Total Undertrack LAMAX (dB)

60 dB Contour Comparison

Population Exposure
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•  Safety 
–  Flight Data Recorder Anomaly Detection (Lishuai Li) 
–  Degraded Breaking Conditions (Nicolas Meijers)

•  Environmental and Fuel Efficiency
–  Cruise Altitude and Speed Optimization (Luke Jensen, Clement Li)
–  DFDR Fuel Burn Analysis (Clement Li, Jean-Marie Dumont) 
–  Delayed Deceleration Approaches (Jean-Marie Dumont, Jacqueline 

Thomas)
•  Airport and Airspace Performance

–  Runway Occupancy Time (Nicolas Meijers) 
–  Metroplex Flow Capacity (Mayara Conde Rocha Murca)
–  Terminal Airspace Use (Parker Vascik)

•  Airport Community Noise Analysis
–  PBN Noise Concentration Impact (Morrisa Brenner, Alison Yu)
–  Alternative Procedure Development (Luke Jensen, Jacqueline 

Thomas)
–  Social Media Analysis (Pedro Manuel Maddens Toscano )
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Quality of Life Impact of LHR Airport on 
Surrounding Communities

Quality	of	Life	Attribute	Structure	
Category	 Attribute	

Social	Media	Analysis	
is	used	to	provide	
further	insight	on	the	
perceptions,	
sentiments	and	
opinions	about	
London	Heathrow	in	
surrounding	
communities	
	
	
	

Definition	

Social	Media	Analysis	
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-  Analysis for 15 mile and 50 mile collection areas
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Twitter Sentiment Analysis
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SentiStrength Machine Leaning 
Algorithm
•  Ranks the sentiment in tweets on a scale 

from -4 to 4
•  SentiStrength used a training dataset of 

human-classified MySpace posts and 
comments

•  These tweets were first analyzed as a 
whole set then using a keyword filter to 
see general sentiment and sentiment 
related to aviation + aviation/ noise to 
extract specific tweets

•  Twitter data: Geolocated and 
time-stamped 

•  Data collected since June 
13th, 2018 using the Twitter 
API

•  13 million tweets collected 
between June 2018 and 
January 2019

•  Initial collection zone: 15 
miles of LHR, extended to 50 
miles

92

Twitter Sentiment Analysis 

Data Methodology

-4: 
Strongly 
Negative 
Mood

0: Neutral Mood 4: 
Strongly 
Positive 
Mood
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Overall Tweet Sentiment
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Keyword Specific Tweet Sentiment
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Aviation	Filter:	All	Tweets	 All	Tweets	

Aviation Keywords: airport or LHR or 
Heathrow or airplane or aeroplane or plane or 
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Aviation/Noise Keywords: words (noise or noisy) 
AND (airport or LHR or Heathrow or airplane or 
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Word Cloud for Highly Positive (3, 4) Aviation-
Related Tweets 

Word Cloud

you
following

thank
greatgood

much
pleasevery

showing
love

take
read

share
blog

care

appreciated

your
awesome

really

lovedlondon amp

amazing

heathrow

growing
airport

thanks

one
day

nice

see
today

time

swing
excited

heathrowairport

planet

hope

new drawing

loving

now

beautiful

plane

viewing

well
back

out

proud

work

knowing

lounge

here

fantastic
wow

last

absolutely

first

such

wonderful

more

brilliant

week

morning

night

way

who

enjoy

terrific

throwing

happy

super

year

full

look

over

team

tonight

always

people

enjoyed

home

done

flight

best

little

youre

lookingterminal
wing

being

another

cant

perfect

shownext

thats

favourite

looks

wings

•  Initial Processing:
–  Remove non-Latin 

characters 
–  Remove weblinks
–  Remove profanity
–  Remove words shorter 

than 3 characters
–  Remove English 

stopwords (e.g. able, 
also, the, and, that)

Word	
Frequency	

(%)	
‘you’	 2.47	
’following’	 1.58	
‘thank’	 1.05	
‘great’	 1.03	
‘good’	 1.02	
’please’	 0.86	
‘appreciated’	 0.64	
‘london’	 0.47	
‘heathrow’	 0.45	
‘airport’	 0.42	
‘heathrowairport’	 0.32	
’excited’	 0.32	
‘today	 0.32	

15	miles	
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Word Cloud for Highly Negative (-3, -4) 
Aviation Tweets

Word Cloud

you
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fuck
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cry

drawing
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terminal

worried

before

cunt
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hour
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away

cunts

•  Initial Processing:
–  Remove non-Latin 

characters 
–  Remove weblinks
–  Remove profanity
–  Remove words shorter 

than 3 characters
–  Remove English 

stopwords (e.g. able, 
also, the, and, that)

Word	
Frequency	

(%)	
'you'	 1.43	
'following'	 0.77	
'showing'	 0.71	
'knowing'	 0.70	
'airport'	 0.65	
'your'	 0.61	
'wing'	 0.60	
'hate'	 0.58	
'planet'	 0.53	
'plane'	 0.49	
'right'	 0.48	
'heathrow'	 0.46	
'heathrowairport'	 0.23	

15	miles	
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Spatial Distribution of Tweet Sentiments and 
Flight Tracks

Strongly 
Positive

Neutral

Average sentiment of non-neutral tweets
Only cells with 5 or more tweets are shown; 1km*1km grid
June 2018-January 2019

Se
nt

im
en

t
Strongly 
Negative

No statistically  
significant trend 
with distance 
from LHR nor 
distance to 
Central London 
observed

15	miles	
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Questions?
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Positive	Tweet	 Sentiment	
Score	

Negative	Tweet	 Sentiment	
Score	

Absolutely	amazing	to	see	the	
@rafredarrows	fly	past	
@HeathrowAirport!		

4	 F*****	hate	living	so	close	to	
Heathrow	airport,	planes	at	
night	are	annoying		

-4	

Expanding	Heathrow	Airport	
will	create	jobs!	It’s	time	for	
the	government	to	approve	it!	

4	 @Heathrow	Why	every	f****	
minute	a	new	noisy	smelly	
plane.	What	are	these	noise	
sewers?	You	are	hurting	
children.	Scum.	

-4	

Have	you	been	to	#London	
Heathrow	Airport???	It’s	
gorgeous	and	one	of	the	
busiest	in	the	world!	

3	 The	thing	I	hate	the	most	about	
Heathrow	is	that	they	always	
give	the	gate	information	super	
late.	I’m	boarding	late	

-3	

Absolutely	loving	the	British	
Airways	Retro	Uniforms	for	99	
Years	of	BA!!	#britishairways	
#ba	#flyba	#heathrow	

3	 @HeathrowAirport	complete	
s***	at	T5	transit.	One	lift	and	
both	escalators	from	T5A	
departures	down	to	transit	are	
broken	

-3	

Example Positive and Negative Aviation 
Tweets
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Approach to Evaluate UAM Airport and 
Airspace Integration
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•  N60 on a peak day with 50 overflights appears to capture complaint 
threshold in dispersion analysis

MSP N60 Count Thresholds

30L	Departures	
Peak	Day	N60	

102 2017	Data	

Peak	Day	
N60	

Complaints	
Captured	

25x	 92.7%	

50x	 83.1%	

100x	 55.7%	

Peak	Day	
N60	

Complaints	
Captured	

25x	 85.4%	

50x	 77.6%	

100x	 70.7%	

Peak	Day	
N60	

Complaints	
Captured	

25x	 91.9%	

50x	 87.2%	

100x	 69.4%	

12L/R	Departures	
Peak	Day	N60	

30R	Departures	
Peak	Day	N60	

17	Departures	
Peak	Day	N60	

Peak	Day	
N60	

Complaints	
Captured	

25x	 90.3%	

50x	 83.2%	

100x	 53.5%	
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•  N60 on a peak day with 50 overflights appears to capture complaint 
threshold in dispersion analysis

CLT N60 Count Thresholds

18C	Departures	Peak	Day	N60	 18	Arrivals	Peak	Day	N60	 18L	Departures	Peak	Day	N60	

103 2017	Data	

Peak	Day	
N60	

Complaints	
Captured	

25x	 53.1%	

50x	 34.0%	

100x	 13.6%	

Peak	Day	
N60	

Complaints	
Captured	

25x	 83.5%	

50x	 80.7%	

100x	 59.6%	

Peak	Day	
N60	

Complaints	
Captured	

25x	 9.7%	

50x	 7.1%	

100x	 6.2%	

•  Communities around CLT appear to have increased sensitivity
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Peak	Day	DNL	 Complaints	Captured	

35	dB	 98.3%	

40	dB	 96.3%	

45	dB	 91.4%	

50	dB	 64.1%	

55	dB	 20.1%	

60	dB	 7.2%	

65	dB	 2.1%	

Peak	Day	DNL	 Complaints	Captured	

35	dB	 99.8%	

40	dB	 98.8%	

45	dB	 95.5%	

50	dB	 84.9%	

55	dB	 44.6%	

60	dB	 4.2%	

65	dB	 3.0%	

Peak	Day	DNL	 Complaints	Captured	

35	dB	 99.9%	

40	dB	 98.7%	

45	dB	 92.9%	

50	dB	 73.1%	

55	dB	 45.1%	

60	dB	 5.4%	

65	dB	 0%	

•  45db DNL on a peak day appears to capture complaint threshold in dispersion analysis
•  Potentially confusing to explain to stakeholders

Peak Day DNL

BOS	33L	Departures	Peak	Day	DNL	 BOS	4L/R	Arrivals	Peak	Day	DNL	 BOS	27	Departures	Peak	Day	DNL	
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2017	Data	


